南京ai短视频创业资讯,人工智能未来的发展前景怎么样?

AI资讯3个月前发布 逍遥
32 0 0

虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。

第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破南京ai短视频创业资讯、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。

人工智能,未来竞争压力大不大

最近一年多感受明显,AI已经落地,尤其是NLP、OCR等领域技术栈和产品已经足够成熟,提供云服务的企业也不少,使得就业门槛越来越低,最重要是现在大环境不乐观,有AI迫切诉求的企业在减少,差不多固定了以腰部以上企业为主,整个技术团队的招聘名额确实有明显压缩,所以体感明显些南京ai短视频创业资讯。

大环境的短期趋势并不乐观南京ai短视频创业资讯,所以名额有收缩。

如果你选的目标企业可能是一二线大厂,以及独角兽企业,而目前市场大环境的短期趋势并不乐观,不是只有AI,其他所有职位都有明显收缩,一二线厂因为嗅觉和判断更敏锐,未雨绸缪更明显,所以在人员HC上反应会更坚决。

如果不是以上企业,因为越来越多的企业很清晰的明白,现有AI技术的基础应用对能力的要求并不高,要学会它并不太难,硕士甚至本科大学相关专业在基础好的情况下,也能很好的学习适应,所以从成本来考虑,企业其实更乐意校招和内部技术转岗来填补。

大环境变差的情况下,小厂的AI诉求不得不快速压制。

AI的效益,往往需要基于大量的用户数据才能产生规模化的复用效益,小厂不具备这样的数据规模以及一整套数据和算法基础平台,以前大环境不错,AI技术的使用甚至被用来当做融资的优势。在目前大环境不好的情况下,已经不具备养活一个这样规模团队,而如果不能形成团队化、数据规模化就形成不了足够的AI竞争优势,对处于生存压力下对资金更敏感的创业公司来说,还不如先节约成本,干好本行过完冬再说。

老人变新人、外行人的资源挤占

先不说应届生了,IT还有很多在行业之外的从业者,通过“AI培训班、二个月专家速成班”,也急迫的挤进来抢占除大厂外的岗位资源,当然,AI领域也有一定基础门槛,所以部分转去做前后端的开发了,一部分在小厂得到机会开始从事基础的AI开发,使用的也是成熟的外部产品。

大部分AI资源的竞争者还是业内的传统后端开发人员,尤其是入行年限在1~3年以内的,就连园区楼下看门的保安都知道AI的薪资和前景好,社会的发展也一定会朝着这个方向走,所以只要有机会,更乐意转岗学习AI。就职的机会确实还是有的,外部招聘专业人才的成本高昂,企业更乐意内部转岗培养、甚至启用外行人。

这里说下,不是只有AI,IT互联网行业所有的从业者,都存在着职位被外部挤占的事实趋势,毕竟刚工作动不动就一万起的职位,几年就能二三万的工资谁不眼红?你让那些师范类、建筑类、服务业的同学情何以堪?这些速成培训班的企业,也间接革了程序员的命,全员都懂AI时,谁还需要只懂基础型的工程师?

但专家级的“调优”大师,不管在哪个行业、小厂还是大厂都会吃香。

业界主流对AI人才的产品诉求和价值认同,已经被技术发展所磨平。

大厂在大数据平台、算法模型平台、实时离线计算等平台建设上已经相对成熟和稳定了,在具有大规模(上亿)用户和大规模商业(不同垂直的业务产品)场景的场景下,算法的任何细微效果提升,都能带来规模化的巨大收益。

阿里、腾讯、百度、华为等企业又通过云平台,将这些技术的基础设施和通用的业务能力对外部进行了云产品输出。外部企业在用户量和商业场景方面其实诉求不高,而且大厂已经形成了聚虹效应,通过不断收购、投资、创新,切入到不同的细分领域,流量开始逐渐向大厂汇集,使得外部企业的用户规模很难做大,AI介入带来的商业价值从概率上来说,可能性就很低,小厂在目前融资和大背景都不乐观的情况下,最迫切的先解决生存问题,发展壮大后再考虑用户和产品的规模化后带来体验和极致的成本效率问题,他们认为那时的算法介入才更划算,当下的技术做好对业务的支撑即可。

© 版权声明

相关文章